martes, 10 de febrero de 2009

ACTIVIDADES


Aqui tenemos una actividad educativa referente a las figuras geometricas...

Ejemplos de Figuras Geometricas


Triangulo:
El triángulo es un polígono formado por tres lados y tres ángulos. La suma de todos sus ángulos siempre es 180 grados.
Para calcular el área se emplea la siguiente fórmula:
Área del triángulo = (base x altura) / 2
(tipos de triángulos: Isósceles, escaleno y equilátero)
Cuadrado:
El cuadrado es un polígono de cuatro lados, con la particularidad de que todos ellos son iguales. Además sus cuatro ángulos son de 90 grados cada uno.
El área de esta figura se calcula mediante la fórmula:
Área del cuadrado = lado al cuadrado
Rectángulo:
El rectángulo es un polígono de cuatro lados, iguales dos a dos. Sus cuatro ángulos son de 90 grados cada uno.
El área de esta figura se calcula mediante la fórmula:
Área del rectángulo = base.altura
Rombo:
El rombo es un polígono de cuatro lados iguales, pero sus cuatro ángulos son distintos de 90º.
El área de esta figura se calcula mediante la fórmula:
Área del rombo= (diagonal mayor x diagonal meno)/ 2
Trapecio:
El trapecio es un polígono de cuatro lados, pero sus cuatro ángulos son distintos de 90º.
El área de esta figura se calcula mediante la fórmula:
Área del trapecio = [(base mayor + base menor).altura] / 2
Paralelogramo:
El paralelogramo es un polígono de cuatro lados paralelos dos a dos.
El área de esta figura se calcula mediante la fórmula:
Área del paralelogramo = base.altura
Pentágono:
El pentágono regular es un polígono de cinco lados iguales y cinco ángulos iguales.
El área de esta figura se calcula mediante la fórmula:
Área del pentágono = (perímetro x apotema) / 2
Hexágono:
El hexágono regular es un polígono de seis lados iguales y seis ángulos iguales.
Los triángulos formados, al unir el centro con todos los vértices, son equiláteros.
El área de esta figura se calcula mediante la fórmula:
Área del hexágono = (perímetro x apotema) / 2
Circulo:
El círculo es la región delimitada por una circunferencia, siendo ésta el lugar geométrico de los puntos que equidistan del centro.
El área de esta figura se calcula mediante la fórmula:
Área del círculo = 3'14. radio al cuadrado

CUERPOS GEOMETRICOS

Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa un lugar en el espacio y en consecuencia tiene un volumen.

LAS FIGURAS GEOMETRICAS


Figuras Geométricas
Existe una variedad de figuras geométricas, algunas sencillas y otras complicadas:
Circulo

Triángulo
Cuadrado
Paralelogramo
Trapecio
Rombo
Octágono
Hexágono
Elipse
Pentágono

figuras geometricas


Geometría (del griego geo, 'tierra'; metrein, 'medir'), rama de las matemáticas que se ocupa de las propiedades del espacio. En su forma más elemental, la geometría se preocupa de problemas métricos como el cálculo del área y diámetro de figuras planas y de la superficie y volumen de cuerpos sólidos. Otros campos de la geometría son la geometría analítica, geometría descriptiva, topología, geometría de espacios con cuatro o más dimensiones, geometría fractal, y geometría no euclídea

Primeros problemas geométricos
Los griegos introdujeron los problemas de construcción, en los que cierta línea o figura debe ser construida utilizando sólo una regla de borde recto y un compás. Ejemplos sencillos son la construcción de una línea recta dos veces más larga que una recta dada, o de una recta que divide un ángulo dado en dos ángulos iguales.
Tres famosos problemas de construcción que datan de la época griega se resistieron al esfuerzo de muchas generaciones de matemáticos que intentaron resolverlos: la duplicación del cubo (construir un cubo de volumen doble al de un determinado cubo), la cuadratura del círculo (construir un cuadrado con área igual a un círculo determinado) y la trisección del ángulo (dividir un ángulo dado en tres partes iguales). Ninguna de estas construcciones es posible con la regla y el compás, y la imposibilidad de la cuadratura del círculo no fue finalmente demostrada hasta 1882.

Los griegos, y en particular Apolonio de Perga, estudiaron la familia de curvas conocidas como cónicas y descubrieron muchas de sus propiedades fundamentales. Las cónicas son importantes en muchos campos de las ciencias físicas; por ejemplo, las órbitas de los planetas alrededor del Sol son fundamentalmente cónicas.
Arquímedes, uno de los grandes científicos griegos, hizo un considerable número de aportaciones a la geometría. Inventó formas de medir el área de ciertas figuras curvas así como la superficie y el volumen de sólidos limitados por superficies curvas, como paraboloides y cilindros. También elaboró un método para calcular una aproximación del valor de pi, la proporción entre el diámetro y la circunferencia de un círculo y estableció que este número estaba entre 3 10/70 y 3 10/71.